Regulation of synapse structure and function by distinct myosin II motors.
نویسندگان
چکیده
Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic actin dynamics and, thus, synapse structure and function. Here, we have cloned the rat isoform of class II myosin heavy chain MyH7B in brain. Unexpectedly, this isoform resembles muscle-type myosin II rather than the ubiquitously expressed nonmuscle myosin II isoforms, suggesting that a rich functional diversity of myosin II motors may exist in neurons. Indeed, reducing the expression of MyH7B in mature neurons caused profound alterations to dendritic spine structure and excitatory synaptic strength. Structurally, dendritic spines had large, irregularly shaped heads that contained many filopodia-like protrusions. Neurons with reduced MyH7B expression also had impaired miniature EPSC amplitudes accompanied by a decrease in synaptic AMPA receptors, which was linked to alterations of the actin cytoskeleton. MyH7B-mediated control over spine morphology and synaptic strength was distinct from that of a nonmuscle myosin, myosin IIb. Interestingly, when myosin IIb expression and MyH7B expression were simultaneously knocked-down in neurons, a third, more pronounced phenotype emerged. Together, our data provide evidence that distinct myosin II isoforms work together to regulate synapse structure and function in cultured hippocampal neurons. Thus, myosin II motor activity is emerging as a broad regulatory mechanism for control over complex actin networks within dendritic spines.
منابع مشابه
Force generation by Myosin II Filaments in Compliant Networks
Myosin II isoforms with varying mechanochemistry and filament size interact with filamentous actin (F-actin) networks to generate contractile forces in muscle and non-muscle cells. How their properties control force production in environments with varying stiffness remains poorly understood. Here, we incorporated literature values for biophysical properties of myosin II isoforms into a cross-br...
متن کاملA cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent.
Myosin II motors play several important roles in a variety of cellular processes, some of which involve active assembly/disassembly of cytoskeletal substructures. Myosin II motors have been shown to function in actin bundle turnover in neuronal growth cones and in the recycling of actin filaments during cytokinesis. Close examination had shown an intimate relationship between myosin II motor ad...
متن کاملRegulation and control of myosin-I by the motor and light chain-binding domains.
Members of the myosin-I family of molecular motors are expressed in many eukaryotes, where they are involved in a multitude of critical processes. Humans express eight distinct members of the myosin-I family, making it the second largest family of myosins expressed in humans. Despite the high degree of sequence conservation in the motor and light chain-binding domains (LCBDs) of these myosins, ...
متن کاملNonmuscle myosins II-B and Va are components of detergent-resistant membrane skeletons derived from mouse forebrain.
Myosins are actin-based molecular motors that may have specialized trafficking and contractile functions in cytoskeletal compartments that lack microtubules. The postsynaptic excitatory synapse is one such specialization, yet little is known about the spatial organization of myosin motor proteins in the mature brain. We used a proteomics approach to determine if class II and class V myosin isof...
متن کاملFunctions of Myosin Motor Proteins in the Nervous System
The myosin superfamily consists of 24 classes of actin-based molecular motors that carry out a diverse array of cellular functions ranging from cell motility and morphology to cytokinesis, signal transduction, membrane trafficking, RNA and protein localization. The development and functioning of the nervous system strongly depends on the proper establishment of complex networks of neurons with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2011